英文原著論文 (*Corresponding author; #Equally contributed)

  1. Harada A, Kunii M, Kurokawa K, Sumi T, Kanda S, Zhang Y, Nadanaka S, Hirosawa KM, Tokunaga K, Tojima T, Taniguchi M, Moriwaki K, Yoshimura S, Yamamoto Hino M, Goto S, Katagiri T, Kume S, Hayashi-Nishino M, Nakano M, Miyoshi E, Suzuki K, Kitagawa H, Nakano A. Dynamic movement of the Golgi unit and its glycosylation enzyme zones. Nature Commun. 2024;15(1):4514.
  2. #Wu J, #,*Moriwaki K, Asuka T, Nakai R, Kanda S, Taniguchi M, Sugiyama T, Yoshimura SI, Kunii M, Nagasawa T, Hosen N, Miyoshi E, *Harada A. EHBP1L1, an apicobasal polarity regulator, is critical for nuclear polarization during enucleation of erythroblasts. Blood Adv. 2023; 7(14):3382-3394.
  3. Tsuchiya Y, Komazawa-Sakon S, Tanaka M, Kanokogi T, Moriwaki K, Akiba H, Yagita H, Okumura K, Entzminger KC, Okumura CJ, Maruyama T, Nakano H. A high-sensitivity ELISA for detection of human FGF18 in culture supernatants from tumor cell lines. Biochem Biophys Res Commun. 2023; 675:71-77.
  4. Fukuoka T, *Moriwaki K, Takamatsu S, Kondo J, Tanaka-Okamoto M, Tomioka A, Semba M, Komazawa-Sakon S, Kamada Y, Kaji H, Miyamoto Y, Inoue M, Bessho K, Miyoshi Y, Ozono K, Nakano H, *Miyoshi E. Lewis glycosphingolipids as critical determinants of TRAIL sensitivity in cancer cells. Oncogene. 2022; 41(38):4385-4396.
  5. Semba M, Takamatsu S, Komazawa-Sakon S, Miyoshi E, Nishiyama C, Nakano H, *Moriwaki K. Proscillaridin A Sensitizes Human Colon Cancer Cells to TRAIL-Induced Cell Death. Int J Mol Sci. 2022; 23(13):6973.
  6. Murai S, Takakura K, Sumiyama K, Moriwaki K, Terai K, Komazawa-Sakon S, Seki T, Yamaguchi Y, Mikami T, Araki K, Ohmuraya M, Matsuda M, Nakano H. Generation of transgenic mice expressing a FRET biosensor, SMART, that responds to necroptosis. Commun Biol. 2022; 5(1):1331.
  7. *Moriwaki K, Park C, Koyama K, Balaji S, Kita K, Yagi R, Komazawa-Sakon S, Semba M, Asuka T, Nakano H, Kamada Y, Miyoshi E, *Chan FKM. The scaffold-dependent function of RIPK1 in dendritic cells promotes injury-induced colitis. Mucosal Immunol. 2022; 15(1):84-95.
  8. Nakabayashi O, Takahashi H, Moriwaki K, Komazawa-Sakon S, Ohtake F, Murai S, Tsuchiya Y, Koyahara Y, Saeki Y, Yoshida Y, Yamazaki S, Tokunaga F, Sawasaki T, Nakano H. MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIP(L). Commun Biol. 2021; 4(1):80.
  9. Torii S, Yamaguchi H, Nakanishi A, Arakawa S, Honda S, Moriwaki K, Nakano H, Shimizu S. Identification of a phosphorylation site on Ulk1 required for genotoxic stress-induced alternative autophagy. Nat Commun. 2020; 11(1):1754.
  10. *Moriwaki K, Balaji S, *Ka-Ming Chan F. The death-inducing activity of RIPK1 is regulated by the pH environment. Sci Signal. 2020; 13(631):eaay7066.
  11. #Iwaki A, #,*Moriwaki K, #Sobajima T, Taniguchi M, Yoshimura SI, Kunii M, Kanda S, Kamada Y, Miyoshi E, *Harada A. Loss of Rab6a in the small intestine causes lipid accumulation and epithelial cell death from lactation. FASEB J. 2020; 34(7):9450-9465.
  12. Shindo R, Ohmuraya M, Komazawa-Sakon S, Miyake S, Deguchi Y, Yamazaki S, Nishina T, Yoshimoto T, Kakuta S, Koike M, Uchiyama Y, Konishi H, Kiyama H, Mikami T, Moriwaki K, Araki K, Nakano H. Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis. iScience. 2019; 15:536-551.
  13. Nishino K, Koda S, Kataoka N, Takamatsu S, Nakano M, Ikeda S, Kamamatsu Y, Morishita K, Moriwaki K, Eguchi H, Yamamoto E, Kikkawa F, Tomita Y, Kamada Y, Miyoshi E. Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation. Oncotarget. 2018; 9(16):12732-12744.
  14. Teoh JJ, Iwano T, Kunii M, Atik N, Avriyanti E, Yoshimura SI, Moriwaki K, Harada A. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS One. 2017; 12(4):e0175888.
  15. Moriwaki K, Balaji S, Bertin J, Gough PJ, Chan FK. Distinct Kinase-Independent Role of RIPK3 in CD11c(+) Mononuclear Phagocytes in Cytokine-Induced Tissue Repair. Cell Rep. 2017; 18(10):2441-2451.
  16. #Moriwaki K, #Farias Luz N, Balaji S, De Rosa MJ, O'Donnell CL, Gough PJ, Bertin J, Welsh RM, Chan FK. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. J Immunol. 2016; 196(1):407-415.
  17. Moriwaki K, Chan FK. Regulation of RIPK3- and RHIM-dependent Necroptosis by the Proteasome. J Biol Chem. 2016; 291(11):5948-5959.
  18. Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015; 6(2):e1636.
  19. Moriwaki K, Bertin J, Gough PJ, Chan FK. A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing. J Immunol. 2015; 194(4):1938-1944.
  20. Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J, Chan FK. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity. 2014; 41(4):567-578.
  21. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FK, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014; 56(4):481-495.
  22. Tanaka K, Moriwaki K, Yokoi S, Koyama K, Miyoshi E, Fukase K. Whole-body imaging of tumor cells by azaelectrocyclization: visualization of metastasis dependence on glycan structure. Bioorg Med Chem. 2013; 21(5):1074-1077.
  23. Nakayama K, Moriwaki K, Imai T, Shinzaki S, Kamada Y, Murata K, Miyoshi E. Mutation of GDP-mannose-4,6-dehydratase in colorectal cancer metastasis. PLoS One. 2013; 8(7):e70298.
  24. Kimura M, Masui Y, Shirai Y, Honda C, Moriwaki K, Imai T, Takagi U, Kiryu T, Kiso T, Murakami H, Nakano H, Kitahata S, Miyoshi E, Tanimoto T. Preparation of branched cyclomaltoheptaose with 3-O-alpha-L-fucopyranosyl-alpha-D-mannopyranose and changes in fucosylation of HCT116 cells treated with the fucose-modified cyclomaltoheptaose. Carbohydr Res. 2013; 374:49-58.
  25. Takeda Y, Shinzaki S, Okudo K, Moriwaki K, Murata K, Miyoshi E. Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer. 2012; 118(12):3036-3043.
  26. Nakagawa T, Moriwaki K, Terao N, Nakagawa T, Miyamoto Y, Kamada Y, Miyoshi E. Analysis of polarized secretion of fucosylated alpha-fetoprotein in HepG2 cells. J Proteome Res. 2012; 11(5):2798-2806.
  27. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012; 150(2):339-350.
  28. Kobayashi Y, Tateno H, Dohra H, Moriwaki K, Miyoshi E, Hirabayashi J, Kawagishi H. A novel core fucose-specific lectin from the mushroom Pholiota squarrosa. J Biol Chem. 2012; 287(41):33973-33982.
  29. Kamada Y, Mori K, Matsumoto H, Kiso S, Yoshida Y, Shinzaki S, Hiramatsu N, Ishii M, Moriwaki K, Kawada N, Takehara T, Miyoshi E. N-Acetylglucosaminyltransferase V regulates TGF-beta response in hepatic stellate cells and the progression of steatohepatitis. Glycobiology. 2012; 22(6):778-787.
  30. Terao M, Ishikawa A, Nakahara S, Kimura A, Kato A, Moriwaki K, Kamada Y, Murota H, Taniguchi N, Katayama I, Miyoshi E. Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J Biol Chem. 2011; 286(32):28303-28311.
  31. Moriwaki K, Shinzaki S, Miyoshi E. GDP-mannose-4,6-dehydratase (GMDS) deficiency renders colon cancer cells resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor- and CD95-mediated apoptosis by inhibiting complex II formation. J Biol Chem. 2011; 286(50):43123-43133.
  32. #Moriwaki K, #Okudo K, Haraguchi N, Takeishi S, Sawaki H, Narimatsu H, Tanemura M, Ishii H, Mori M, Miyoshi E. Combination use of anti-CD133 antibody and SSA lectin can effectively enrich cells with high tumorigenicity. Cancer Sci. 2011; 102(6):1164-1170.
  33. Kawamoto S, Moriwaki K, Nakagawa T, Terao M, Shinzaki S, Yamane-Ohnuki N, Satoh M, Mehta AS, Block TM, Miyoshi E. Overexpression of alpha1,6-fucosyltransferase in hepatoma enhances expression of Golgi phosphoprotein 2 in a fucosylation-independent manner. Int J Oncol. 2011; 39(1):203-208.
  34. Uozumi N, Gao C, Yoshioka T, Nakano M, Moriwaki K, Nakagawa T, Masuda T, Tanabe M, Miyoshi E. Identification of a novel type of CA19-9 carrier in human bile and sera of cancer patients: an implication of the involvement in nonsecretory exocytosis. J Proteome Res. 2010; 9(12):6345-6353.
  35. Nakagawa T, Takeishi S, Kameyama A, Yagi H, Yoshioka T, Moriwaki K, Masuda T, Matsumoto H, Kato K, Narimatsu H, Taniguchi N, Miyoshi E. Glycomic analyses of glycoproteins in bile and serum during rat hepatocarcinogenesis. J Proteome Res. 2010; 9(10):4888-4896.
  36. Moriwaki K, Narisada M, Imai T, Shinzaki S, Miyoshi E. The effect of epigenetic regulation of fucosylation on TRAIL-induced apoptosis. Glycoconj J. 2010; 27(7-9):649-659.
  37. Matsumoto H, Shinzaki S, Narisada M, Kawamoto S, Kuwamoto K, Moriwaki K, Kanke F, Satomura S, Kumada T, Miyoshi E. Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin Chem Lab Med. 2010; 48(4):505-512.
  38. #Sasaki N, #Moriwaki K, Uozumi N, Noda K, Taniguchi N, Kameyama A, Narimatsu H, Takeishi S, Yamada M, Koyama N, Miyoshi E. High levels of E4-PHA-reactive oligosaccharides: potential as marker for cells with characteristics of hepatic progenitor cells. Glycoconj J. 2009; 26(9):1213-1223.
  39. Moriwaki K, Noda K, Furukawa Y, Ohshima K, Uchiyama A, Nakagawa T, Taniguchi N, Daigo Y, Nakamura Y, Hayashi N, Miyoshi E. Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology. 2009; 137(1):188-198, 198 e181-182.
  40. Narisada M, Kawamoto S, Kuwamoto K, Moriwaki K, Nakagawa T, Matsumoto H, Asahi M, Koyama N, Miyoshi E. Identification of an inducible factor secreted by pancreatic cancer cell lines that stimulates the production of fucosylated haptoglobin in hepatoma cells. Biochem Biophys Res Commun. 2008; 377(3):792-796.
  41. Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, Hayashi N, Miyoshi E. A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology. 2007; 17(12):1311-1320.
  42. Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, Murata K, Ohigashi H, Yokoyama S, Eguchi H, Ishikawa O, Ito T, Kato M, Kasahara A, Kawano S, Gu J, Taniguchi N, Miyoshi E. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer. 2006; 118(11):2803-2808.
  43. Nakahara S, Saito T, Kondo N, Moriwaki K, Noda K, Ihara S, Takahashi M, Ide Y, Gu J, Inohara H, Katayama T, Tohyama M, Kubo T, Taniguchi N, Miyoshi E. A secreted type of beta1,6 N-acetylglucosaminyltransferase V (GnT-V), a novel angiogenesis inducer, is regulated by gamma-secretase. FASEB J. 2006; 20(14):2451-2459.

英文総説

  1. Moriwaki K. Regulation of TRAIL-induced cancer cell death by fucosylated glycans. Trends Glycosci Glycotechnol. 2024; 36(210):E30-E34.
  2. Nakano H, Murai S, Moriwaki K. Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochem J. 2022; 479(5):677-685.
  3. *Moriwaki K, Chan FKM, Miyoshi E. Sweet modification and regulation of death receptor signalling pathway. J Biochem. 2021; 169(6):643-652.
  4. Moriwaki K, Chan FK. The Inflammatory Signal Adaptor RIPK3: Functions Beyond Necroptosis. Int Rev Cell Mol Biol. 2017; 328:253-275.
  5. Sawanobori A, Moriwaki K, Takamatsu S, Kamada Y, Miyoshi E. A glycoproteomic approach to identify novel glycomarkers for cancer stem cells. Proteomics. 2016; 16(24):3073-3080.
  6. Moriwaki K, Chan FK. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell Mol Life Sci. 2016; 73(11-12):2325-2334.
  7. Moriwaki K, Balaji S, Chan FK. Border Security: The Role of RIPK3 in Epithelium Homeostasis. Front Cell Dev Biol. 2016; 4:70.
  8. Chan FK, Luz NF, Moriwaki K. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. 2015; 33:79-106.
  9. Moriwaki K, Chan FK. Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine Growth Factor Rev. 2014; 25(2):167-174.
  10. Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013; 27(15):1640-1649.
  11. Miyoshi E, Moriwaki K, Terao N, Tan CC, Terao M, Nakagawa T, Matsumoto H, Shinzaki S, Kamada Y. Fucosylation is a promising target for cancer diagnosis and therapy. Biomolecules. 2012; 2(1):34-45.
  12. Moriwaki K, Miyoshi E. Fucosylation and gastrointestinal cancer. World J Hepatol. 2010; 2(4):151-161.
  13. Moriwaki K, Miyoshi E. Role of fucosylation in tumor immunology. Trends Glycosci Glycotechnol. 2010; 22(127):239-246.
  14. Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem. 2008; 143(6):725-729.

英文著書

  1. Chan FK, Nailwal H, Moriwaki K. Targeting Necroptosis in Antitumor Therapy. In: Targeting Cell Survival Pathways to Enhance Response to Chemotherapy, Academic Press, 2019, 3:275-85.
  2. Moriwaki K, Miyoshi E. Basic procedures for lectin flow cytometry. Methods Mol Biol. 2014; 1200:147-152.
  3. Moriwaki K, Chan FK. Programmed Necrosis in Immunity and Inflammatory Diseases. In: Cell death in Biology and Diseases: Necrotic Cell Death, Springer, 2014, 177-94.
  4. Chan FK, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol. 2013; 979:65-70.
  5. Miyoshi E, Shinzaki S, Moriwaki K, Matsumoto H. Identification of fucosylated haptoglobin as a novel tumor marker for pancreatic cancer and its possible application for a clinical diagnostic test. Methods Enzymol. 2010; 478:153-164.

和文総説

  1. 森脇健太.ネクロプトーシス研究の最前線,臨床免疫・アレルギー科,2024, 82(4);427-433.
  2. 森脇健太.ネクロプトーシス,The Lipid,2024, 35(2); 37-43.
  3. 森脇健太.ネクロプトーシスの分子機構と生体における意義,皮膚科,2024, 5(5);446-452.
  4. 森脇健太.ネクロプトーシスの分子機構と意義,医学のあゆみ, 2022, 283(5):335-340.
  5. 福岡智哉,森脇健太,三善英知.がんにおけるルイス糖鎖の生物学的機能,医学のあゆみ, 2022, 281(9):888-892.
  6. 森脇健太,中野裕康.ネクロプトーシスの制御機構と病理的意義,細胞,2021, 53(12):739-42.
  7. 森脇健太. RIPキナーゼによる細胞死と炎症の制御,生化学,2021, 93(4):451-65.
  8. 森脇健太.制御性ネクローシスと炎症,臨床免疫・アレルギー科,2020, 74(6);543-9.
  9. 森脇健太,中野裕康. TNFレセプターを介するシグナル伝達経路,臨床免疫・アレルギー科,2020, 73(1):51-57.
  10. 森脇健太.ネクロプトーシス誘導分子RIPK3による細胞死と炎症の制御,生化学,2019, 91(2):265-7.
  11. 森脇健太.細胞死と炎症におけるRIPK3の多様な機能,実験医学 増刊号,2016,34(7):1124-31.
  12. 森脇健太. RIPK3はネクローシスに非依存的にサイトカインの産生および組織の修復を促進する,ライフサイエンス新着論文レビュー,2014, DOI:10.7875/first.author.2014.136.
  13. 寺尾尚子,奥戸久美子,森脇健太他,糖鎖を用いた肝癌幹細胞の単離とその生物学的特性,月刊消化器内科,2013, 56(3):292-300.
  14. 森脇健太,三善英知.癌における糖鎖異常と臨床検査―フコシル化を中心に.臨床検査2008, 52(6):699-704.

和文著書

  1. 森脇健太.第3部 代謝16章 ヌクレオチドの生合成と分解,ベインズ・ドミニチャク生化学,谷口直之,高橋素子,藤井順逸,本家孝一,Elsevier,2024,207-219.(翻訳
  2. 森脇健太.がんと細胞死,実験医学 もっとよくわかる!細胞死,中野裕康,羊土社,2024, 180-188,
  3. 森脇健太.ネクロプトーシス,実験医学 もっとよくわかる!細胞死,中野裕康,羊土社, 2024, 63-72,
  4. 酒巻和弘,森脇健太.アポトーシス,実験医学 もっとよくわかる!細胞死,中野裕康, 羊土社,2024, 46-62,
  5. 森脇健太.第IV部 代謝の制御13章 糖質の構造と機能,ミースフェルド生化学,水島昇,東京化学同人,2020,507-542.(翻訳
  6. 森脇健太,中野裕康.第8章 ネクロプトーシス -制御されたネクローシスとは-,細胞死 その分子機構、生理機能、病態制御,三浦正幸・清水重臣,化学同人,2019,79-86.
  7. 進藤綾大,森脇健太,中野裕康.第4章 デスリガンドを介したアポトーシス,細胞死 その分子機構、生理機能、病態制御,三浦正幸・清水重臣,化学同人,2019,35-45.
  8. 三善英知,寺尾尚子,森脇健太,鎌田佳宏.膵臓幹細胞と糖鎖,膵島の再生医療~膵β細胞の発生と再生をめぐる新展開,井村裕夫・清野進,診断と治療社,2015, 91-95.
  9. 森脇健太,三善英知.がんとフコース,「糖鎖を知る」その素顔と病気への挑戦,(独)科学技術振興機構,2010, 113-121.